
Notes on plotting data and theory 
in Mathematica

Introductory comments
Always try to compare your data to a possible theory.  Making such comparisons is often nicely done via 
plotting of the data and the theory.

It’s often the case that you take some data, say on amplitude and phase of some signal, and that you 
might need to plot the data.  Mathematica has lots of tools to help.  Here are some examples of plotting 
in Mathematica, to help you generate easier to understand plots of your data and theoretical expecta-
tions.

You can get additional inspiration from the Mathematica Activity 1 and Activity 2.

General important comments on using Mathematica

A few very general rules :
    1) NEVER name your functions, data lists, or any other thing that you define in Mathematica, EVER 
EVER, with names that start with Capital Letters. Ever. All built-in functions start with capital letters. If 
you use them, then some day you will end up redefining some internal function, and you will be very 
confused by the behavior of Mathematica thereafter.  It’s surprisingly easy to say something like, “Sin = 
0.5” and thereby redefine the Sin function. Don’t start names with capital letters.
    
    2) Mathematica tries to help you by using colors to tell you about things. For example, when some-
thing is presently not defined it appears in blue font. Use that fact, and you’ll start to understand why 
some of your efforts are not working.
    
    3) Often you will define some function, and try to plot it, but all you get is an empty graph. What’s 
wrong?? Many times, you can see what’s wrong if you numerically evaluate the function at a single 
point. If all the necessary items have been defined, you are going to get a number. If not, Mathematica 
prints out the best it can do, and you can see what items are yet to be defined.

Some low - pass data to plot
Let' s start with some data on the Vout/Vin for a low - pass filter. Here is a sample set of data from one 
of your colleagues, from their Lab 3 report:



In[3]:= lowPassAmplitudeData  16.770, 1.00, 167.7, 1.00,

1677, 1.00, 16 770, 0.704, 167 770, 0.137, 1 677 000, 0.059
Out[3]= 16.77, 1., 167.7, 1., 1677, 1.,

16 770, 0.704, 167 770, 0.137, 1 677 000, 0.059
Notice a couple of things about this data set that are excellent: First, notice that the data set was taken 
at a variety of frequencies and that the frequencies are separated by factors of ten. That fact indicates 
that the folks taking the data were thinking about logarithmic scales.  Second, notice that the data 
includes points that are well outside the ‘interesting’ region. In this case, ‘interesting’ means the region 
where the low pass filter begins to attenuate the input signal. This data set has points that are well 
inside and well outside the region of the knee frequency, so you have a chance to see whether the 
overall behavior follows expectations.

OK, so here is an example of plotting the data :

awfulPlot  ListPlotlowPassAmplitudeData

Out[4]=
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The plot of data points shown above is named ' awfulPlot' for a good reason. It' s awful.  So awful, that 
it’s hard to even start..., but here are a few problems:

1) No axis labels (what is being plotted here??)

2) Fonts are too small for a human to read without technology.

3) Where are all the data points? Mathematica has cut off the point at 1.677 MHz in an effort to help you 
see the data points at much lower frequency.  Generally, Mathematica makes choices about auto-
scaling that are not always helpful.

4) The data points themselves are too small to be easily visible.

5) With this choice of linear axes, many of the data points are crammed into the left end of the plot, so 
you can’t see them.

Spread the data out using LogLog axes

Here' s an improvement that lets you see all the data more clearly by using a set of logarithmic axes:
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In[6]:= awfulListLogLogPlot  ListLogLogPlotlowPassAmplitudeData

Out[6]=
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All the other complaints still hold. There are no labels and everything is too small. 

Here is a version that solves many of these problems:

In[22]:= lessAwfulListLogLogPlot  ListLogLogPlotlowPassAmplitudeData,

Frame  True, PlotLabel  "Loglog plot of lowpass filter amplitude data",

PlotRange  5, 5 000 000, 0.02, 2,

FrameLabel  "Frequency Hz", "Gf",

LabelStyle  FontFamily  "Arial", FontSize  13,

FrameStyle  Thickness0.005, PlotStyle  Red, Thickness0.01,

PlotMarkers  Automatic, Medium

Out[22]=
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Log-log plot of low-pass filter amplitude data

Now you can see the data points, the plot is labeled so you know immediately what is being plotted, and 
everything is more readable.  There are many esthetic choices you can make beyond these, but at least 
the plot is more easily understood.

Plotting theory
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OK, so we can apply the same approach to our plots of theory.  For example, the low - pass amplitude 
is predicted by theory to be given by :
   

In[16]:= lowPassAmplitudeTheoryf_, res_, cap_ :
1

1  2  f res cap2

Let' s test the function to be sure that it evaluates.  The data was taken on a low-pass filter constructed 
from a 4.67kOhm resistor and a 2.19 nF capacitor. That pair of components should give us a 3dB point 
around 16kHz, so let’s see if we get something reasonable from the function :

In[17]:= lowPassAmplitudeTheory16 000, 4670, 2.19  10^9
Out[17]= 0.697222

The function appears to work, so let' s try plotting it in a less awful way :

In[20]:= lessAwfulTheoryLogLogPlot 

LogLogPlotlowPassAmplitudeTheoryf, 4670, 2.19  10^9, f, 5, 2 000 000,

Frame  True, PlotLabel  "Loglog plot of lowpass filter theory",

PlotRange  5, 5 000 000, 0.02, 2,

FrameLabel  "Frequency Hz", "Gf",

LabelStyle  FontFamily  "Arial", FontSize  13,

FrameStyle  Thickness0.005, PlotStyle  Red, Thickness0.01,

PlotStyle  Red, Thickness0.01

Out[20]=
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Log-log plot of low-pass filter theory

Looks pretty good.

Compare your data to the theory
It' s always useful to compare the data that you took to the theory (if any!) that you might have in mind 
for explaining it.  Doing the comparison in real - time, while you are taking the data, is often an excellent 
idea :  If you compare the data to the theory as you go, it makes it much more interesting (kinda like 
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betting on a horse race!) and much more likely that you will notice when your measurements and theoreti-
cal expectations are beginning to deviate.
  
  For example, here' s a comparison of the nice data above to the nice theory :

In[21]:= ShowlessAwfulListLogLogPlot, lessAwfulTheoryLogLogPlot

Out[21]=
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Log-log plot of low-pass filter amplitude

See how nicely things were going, but then ... something interesting is happening at the higher frequen-
cies. Wonder why the signal seems to be less attenuated than we expected.  Could it be a non - ideality 
in the filter?  Could it be that we were reading some ' amplitude' from the scope screen, that was larger 
than the actual sine wave, say due to noise on the sine wave?  Could it be ... ??  It's in this type of 
comparison that you begin to confront in a serious way, whether you do or do not actually understand 
what's going on!
  

Notice also that a simple table or list of the data fails pretty completely to tell us whether something 
interesting is happening. Plots are great for turning loose our built - in image processing systems.
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